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NOMENCLATURE 

wall thickness; 
specific heat ; 
convective coefficient of heat transfer; 
thermal conductivity ; 
latent heat of fusion ; 
Stefan number for freezing; 
time ; 
time at which the thermal front in the wall reaches 
the outside surface, x = --a; 
temperature; 
initial temperature of the wall ; 
distance measured from the wall-crust interface.. 

Greek symbols 

4 thermal diffusivity ; 
6, instantaneous frozen crust thickness; 
6 7.7 instantaneous thickness of the thermal layer in the 

wall ; 
A, dimensionless thickness of the solidified crust; 
AuT, dimensionless thickness of the wall; 

Ar, dimensionless thickness of the wall thermal layer; 
0 119 dimensionless temperature at the wall surface; 
e I, dimensionless temperature at the wall-crust 

interface ; 
e 
e”,T, 

dimensionless temperature in the frozen crust; 
dimensionless temperature in the wall ; 

4 inverse Stefan number for freezing; 

0, wall-frozen crust thermal ratio; 

P> density ; 
T, dimensionless time ; 
r,,, dimensionless time at which the thermal front, 6r, 

reaches the wall outer surface, x = -a; 
r*, dimensionless time during the second stage of the 

analysis (r* = r - r.); 

rrire, total lifetime. 

Subscripts 

wall outside surface ; 
freezing liquid bulk ; 
fusion ; 

t This work was supported by the U.S. Nuclear Regulatory 
Commission, Division of Fast Reactor Safety Research. 

$ Present address: Thermal Fuels Behavior Program 
EG & G Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83401, 
U.S.A. 

1, at the interface between the wall and the frozen 
crust; 

max, at the maximum thickness of the frozen crust; 

s, solidified crust; 

; 
solid wall; 
freezing liquid. 

1. INTROUUCTION 

IN A RECENT paper [1] the growth (freezing) and decay 
(melting) behavior of the frozen crust that forms in forced 
flow on a semi-infinite solid wall was studied analytically 
using the integral heat balance method, as formulated by 
Goodman [2] ; it was found to depend upon the wall-crust 
thermal ratio, (p,,k,CpM/pjcsC,)“2, and the St&n number for 

freezing, Cp.(Tf - T,J/L. Presently available solutions in a 
finite geometry consider the wall to be isothermal [3-91, where 
the frozen crust continues to grow in thickness approaching a 
steady-state value when the convective heat flux from the 
liquid balances that which can be conducted away through the 
wall. A solution for the transient growth and decay behavior 
of the frozen crust in finite geometry has not been developed 
to date. 

In the present work, an approximate solution is presented 
for the growth and decay behavior of the frozen layer that 
forms in forced flow on a finite non-melting wall, subject to an 
adiabatic boundary condition at its opposite surface. The 
refined integral heat balance (RIHB) method, as introduced 
in a previous paper [lo], is used in the present analysis.,Such a 
method has been shown to provide an accurate prediction of 
the instantaneous position of the moving change-of-phase 
front, as applied to one-dimensional melting and freezing 
problems. 

2. PHYSICAL MODEL 

As shown in Fig. 1, the problem considered is that of the 
freezing of a flowing liquid on a cold, non-melting wall of 
finite thickness, --u 5 x I 0. The liquid is at a fixed bulk 
temperature, T,, above its freezing point, Tf, whereas the wall 
is initially at some uniform temperature, T,, below T, and 
subject to an adiabatic boundary condition at its outside 
surface, x = - a. The conditions imposed upon the problem 
are : 
1. Axial heat conduction in the frozen crust is neglected. 
2. The thermophysical properties of the liquid, the solidified 

crust and the wall are constant, but different. 
3. The convective coefficient of heat transfer at the liquid- 

solidified crust interface, h, is assumed constant, where the 
effect of the moving change-of-phase front on disturbing 
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Tb-Tt) + 

t-x 
x = -a x =o x = 6(l) 

FIG. 1. Schematic diagram for the freezing of a flowing liquid onto a cold wall of finite thickness, -0 <X Q 0, 
the wall being insulated at x = - a. 

the thermal boundary layer in the liquid is neglected. 

The analysis of the present problem is handled in two 
stages : 

First mye 

During the time period when the thermal penetration 
distance is less than the physical dimension of the wall (that is, 
6, < a), the mathematical formulation of the heat transfer 
problem is the same as that for the freezing of a flowing liquid 
on a semi-infinite wall [l]. The transient heat conduction 
equation for the solidified crust and the wall is 

dT dLT 
-=a,, 
at ax- 

(1’ 

while the boundary conditions at the solidification and the 
thermal penetration fronts are 

T,(& t’ = TJ. 

k,$@.r) = h(T, - T,), + p,L$, (2a) 

and 

T&&t’= Tu, (2b’ 

The boundary conditions to be satisfied at x = 0 are 

T,(O,t) = T,.(O,t), and k,z(O.r) = k..z(O.t). (3) 

The parameters to be calculated during this stage are the 
transient frozen layer thickness, d(t), the thermal penetration 
distance into the wall, b,(t), and the temperature at the 
common plane of separation, T,(t). The initial conditions are 
that h(t = 0) = 0 and b,(r = 0) = 0. 

Second stage 

During the second stage of the analysis the thermal layer 
front, s,(t), reaches the wall surface such that &(t = t.) = a. 
The governing equations in both the crust and the wall are the 
same as in the first stage but the boundary conditions in the 
wall becomes 

T,,.(-u,t*)= T,(t*) and k,$(-o,r*)=O, 

where (t* = t - t,). (4) 

The transient parameters to be calculated during this stage 
are the frozen layer thickness, 6(t*), the interface temperature, 

T,(t*), and the wall surface temperature, T,(t*). The initial 
conditions are that 6(t* = 0) = 6(t,), and T,(t* = 0) = T,,. 
Initial condition for the frozen crust thickness, 6, and the 
value for the interface temperature, T,, at t = t, are calculated 
during the first stage of the analysis. 

3. METHOD OC SOLUTION 

Since the original concept of the integral method [2, lo], as 
applied to solidification and melting problems, is well 
documented in the literature, the method of solution is only 
briefly outlined here. The basic steps are similar to those 
described in [l], with some modification to the integration 
scheme as suggested in [lo]. The reader is referred to those 
two papers [l, 10) as a guide to the solution procedure. The 
following dimensionless parameters are used herein for 
simplification of the analysis: 

TE 
hz(Tb - T,)’ 

kf(T, - T,,” (ast’ I 
(dimensionless time); 

T z C hz(Tb - T,” Y J&T, - To” @J”) 1 
(dimensionless time at which the thermal front aT 
reaches the outside surface, x = - a); 

AE W- TJ’ 
[ W, - To’ 

a(t) 
1 

(dimensionless frozen crust thickness) ; 

I” h(T, - T,’ 

UT, - T,’ ‘r 1 
(dimensionless wall thermal penetration 
thickness); 

“’ h(T, - T,) 

UT, - To) a I 
(dimensionless wall thickness); 

(dimensionless wall surface temperature); 

@ihens&less temperature in the frozen layer) ; 
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I-?.. --I 

e,+y 
(di~ensillnless wall-crust interface temperature); 

T,. - T” 
e,.= ~ 

[ 1 T, - 7-u 
(dimensionless temperature in the solid 

L 
EE 

wall); 

CPSV, - T,,) 
(inverse Stefan number for freezing); 

(wall-frozen crust thermal ratio). (5) 

As usual with the integral heat balance method, the 
temperature field in the frozen layer during the first stage of 
the analysis (that is for t < t.) is assumed to be described by a 
second degree polynominal in time and space of the following 
form : 

B,(x,t)= 1 -(I -0,){B(f)() -&) 

+[I-W)](t-&)2}, (6) 

where B(t) is a shape function dependent upon the boundary 
conditions in the solidified crust. The peculiarity of the present 
problem is that the temperature at the wallcrust interface is 
not constant. As a result, the heat-transfer process in the 
frozen layer must be coupled to that in the solid wall. To 
accomplish this coupling, the temperature field in the wall is 
also assumed as a second degree polynominal in time and 
space of the form : 

B,,.(x,t, = e, 1 + f ( > 
2 

From equations (l)-(3), (5)-(7), the following coupled 
system of dimensionless equations is obtained : 

$=2(y)-2(&)e,- 1, 

!g=(&)_(!$!$, 

and 

(8, 

where 

cl0 = a,lqu, a,, = a2fa0, 

.,,=A[: &+0(e) 

a, =3[(2s+ i)_8,(1 - 

and 

x = --a (i.e. A, = Au& the temperature at x = - U, T,, is no 
longer constant; thus a different analysis must be furnished 
which is described as follows. 

During the second stage of the analysis (that is, for T > T,,) 
the temperature distribution in the solidified crust is as 
described by equation (6) since the boundary conditions of 
the crust do not change. However, the temperature field in the 
wall is changed to satisfy the new boundary condition in the 
wall presented by equation (4), which is assumed as 

( > 
1 

e,,(x,t*j = e,, - (e,, - e,) i + f _. 

Through use of equations (1). (2a), (3)-(6) and (10) the 
following new set of coupled equations is obtained : 

and 

2 = b,,tg + b,“: - b,,, 

where 

b,, = W,,, b,,, = bzlb,,, b,,, = b,lb,,, 

(11) 

and 

b,=6[2-$1. 

The coupling of this set of equations is sufficient to determine 
the three unknown functions, in this case, A(r*, E, o, Aur), 

e,(r*, E, u, A”,), and B,(r*, E, o, A,,), subject to the initial 
condition A@* = 0) = A(?,) and @Jr* = 0) = 0. The initial 
value for the frozen crust, A(?* =0), and that for the interface 
temperature, T,(r * = 0) are as determined during the first , 
stage of the analysis. Numerical integration of the coupled 
equations was performed using the Gear method [13] 
(available from the Argonne National Laboratory Code 
Center). 

4. DiSCUSSION AN0 CONCLUSIONS 

The (one-dimensional) behavior of the frozen crust that 

a,=b[(y)-$1. 

forms on an insulated, non-melting finite wall was studied 
using the refined integral heat balance method and found to 
depend on three parameters, namely ; the wall-crust thermal 
ratio, o, Stefan number for freezing, SN, and the dimension- 
less wall thickness, Aur. As evidenced by Fig. 2(a), the wall 

(9) 
thickness does not greatly influence the growth rate of the 
solidified crust at early times. The maximum thickness of the 
crust and its decay behavior, however, are strongly influenced 
by the wall thickness as long as the thermal front reaches the 
wall surface (x = - u) before the crust reaches its maximum 
thickness. Physically, the temperature at the opposite surface 
of the wall, T., begins to increase with time when,the thermal 

This system of coupled equattons represents a complete 
mathematical solution to the problem for times r < ra and is 
adequate to determine the three unknown functions A(T, s, a), 
A~(T, E, a), and @,(r, E, a), subject to the initial conditions that 
A(r = 0) = 0, and A,@ = 0) = 0. 

layer, 6,(t), reaches the wall surface. Eventually, T. ap- 
proaches the fusion temperature of the liquid, TJ, when the 
deposited crust completely disappears due to remelting. 
An evaluation of the total lifetime of the crust can simply be 
obtained from the energy balance h(‘f, - T,) rlire = 
aCp..p..(T, - T,,), or r,,r. = 04,. which is accurate when the Once the thermal front, s,(t), reaches the wall surface, 
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cold wall is thin [ll], [that is, when rare > u’/(a& or when u 

> (A.,/4 
Figures 2(b) and (c) show that the maximum crust 

thickness and the crust total lifetime are strongly dependent 
upon the wall-crust thermal ratio, cr, and the wall thickness, 
Aor. An increase in cr or A.r results in an increase in the 
maximum thickness of the crust and its total lifetime. Such 
behavior is expected since increasing the wall thickness or the 
wall-crust thermal ratio results in a more efficient wall heat 
sink, over a longer period of time. The Stefan number of 
freezing, SN, however, strongly influences A,,,,,, whereas it has 
a slight effect on rule. Increasing Stefan number increases the 
maximum crust thickness and reduces its total lifetime, due to 
faster growth and decay processes, as would be expected for 
materials with a lower heat of fusion. 

The result of such a parametric study indicates that the wall 

(a) 

thickness plays an important role in the transient growth and 
decay characteristics of the solidified crust; thus, previously 
obtained results for semi-infinite geometry are applicable 
only to problems where the growth and decay behavior of the 
crust occurs for times less than that for the thermal pene- 
tration through the solid wall (that is, for AU7 > a~). The 
solution technique presented here [lo] can easily be extended 
to a wide variety ofproblems ofengineering utility, where one 
wishes to obtain an estimation of the transient growth and 
decay behavior of a frozen crust that forms in a flowing liquid 
on a cold wall of finite extent. As discussed in [l, 121 such 
problems are ofinterest for nuclear reactor safety assessment, 
where an understanding of molten fuel freezing potential on 
core substructures is desirable for postulated reactor core 
overheating situations where fuel pin melting occurs. 

FIG. 2. The effect of (a) wall thickness, (b) Stefan number, and (c) wall-crust thermal ratio on the behavior of 
the solidified crust. 
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